provide an additional lamp to provide an extra source of heat.
use binding agents such as chalk, kaolin or activated attapulgite to absorb toxins from the gut.
Management control and prevention
adopt procedures to prevent the spread of the scour – disinfect boots between pens, use a disposable plastic apron when dosing piglets to prevent heavy contamination of clothing, wash hands after handling a scoured litter, disinfect brushes and shovels between pen.
ensure that farrowing houses are only used on an all-in all-out basis with a pressure wash and disinfection between each batch.
farrowing pens must be dry before the house is repopulated. Remember that moisture, 暖かさ、 waste food and faeces are ideal for bacterial multiplication.
pen floors should be well maintained. Poor pen hygiene associated with bad drainage predisposes to scour.
look carefully at the part of the pen floor where there are piglet faeces. Is this poorly drained? Do large wet patches develop? If so cover them with extra bedding daily and remove. This is a most important aspect of control.
check nipple drinkers and feeding troughs for leakages.
ensure that faeces are removed daily from behind the sow from the day she enters the farrowing crates until at least 7 days post-farrowing if the floors are slatted. Also remove faeces daily throughout lactation if they are solid concrete.
maintain creep environments that are always warm and comfortable. Fluctuating temperatures are a major trigger factor to scour particularly from 7 to 14 days of age.
consider vaccinating against E. Coli (make sure first that this is the cause of the problem however). E. Coli vaccines only protect the piglet for the first 5 to 7 days of age.
assess the environment of all the farrowing house. Poor environments allow heavy bacterial multiplication and a much higher bacterial challenge is likely to break down the colostral immunity.
check the sow’s health. Animals affected with enteric or respiratory disease, lameness or mastitis predispose the litter to scour.
where farrowing house floors are very poor, pitted and difficult to clean, brush them over with lime wash containing a phenolic disinfectant.
Colostrum management :it is vital that the piglet receives the maximum amount of colostrum within the first 12 hours of birth. High levels of antibody are only absorbed during this period. Factors such as poor teat access, poor crate design, and particularly the development of agalactia in the sow, associated with udder oedema, reduce intake.
PPR (goat plague)
PPR (Peste des petits ruminants) is a most important viral disease of goat capable of heavy mortality and commonly called as goat plague.
病因
The causative virus was first thought to be an aberrant strain of rinderpest virus that had lost its ability to infect cattle. Later molecular studies showed that it was distinct from, but closely related to, rinderpest virus.
Clinical signs:
The clinical sign of PPR in goats is often fulminating and fatal although apparent infection occurs in endemic areas. Incubation period may range from 2-6 days in field conditions. In acute form, there is sudden onset of fever with rectal temperature of at least 40°- 41°C. The affected goats show dullness, sneezing, serous discharge from the eyes and nostrils.
During this stage farmers often think that the animal has developed cold exposure and may attempt to provide protection for cold. In the process goats, may be congregated and accentuate the process of transmission. After 2-3 days, discrete lesions develop in the mouth and extend over the entire oral mucosa, forming diphtheric plaques.
During this stage profound halitosis (foul smell) is easily appreciable and the animal is unable to eat due to sore mouth and swollen lips. Latter ocular discharge becomes mucopurulent and the exudate dries up, matting the eyelids and partially occluding the nostrils.
Diarrhea develops 3-4 days after the fever and is profuse and faeces may be mucoid or bloody depending upon the damage. Dyspnea and coughing occur later due to secondary pneumonia. Death occurs within one week of the onset of the illness.
Treatment and control:
No specific treatment is recommended for ppr being viral disease.しかし、 mortality rates can be reduced by the use of drugs that control the bacterial and parasitic complications. Specifically, oxytetracycline and chlortetracycline are recommended to prevent secondary pulmonary infections.
Lesions around the eyes, nostrils and mouth should be cleaned twice daily with sterile cotton swab. Our experience indicates that fluid therapy and anti-microbial such as enrofloxacin or ceftiofur on recommended doses along with mouth wash with 5% boro-glycerine can be of benefit in reducing the mortality during outbreak of ppr in goats.
Health workers should inspect first the unaffected goats followed by treatment of affected goats. Immediate isolation of affected goats from clinically healthy goats is most importance measure in controlling the spread of infection. Nutritious soft, しっとり、 palatable diet should be given to the affected goats. Provide parenteral energy infusion in anorectic goats along with appetizers.
Immediately measures should be taken for notification of disease to nearest government veterinary hospital. Carcasses of affected goats should be burned or buried. Proper disposal of contact fomites, decontamination is must. Vaccination is the most effective way to control ppr.
Bovine babesiosis (tick fever)
原因
Bovine babesiosis (bb) is a tick-borne disease of cattle. Transmission of b bovis takes place when engorging adult female ticks pick up the infection. They pass it on to their progeny via their eggs. Larvae (or seed ticks) then pass it on in turn when feeding on another animal. B bigemina is also passed from one generation of ticks to the next.
Engorging adult ticks pick up the infection and nymphal and adult stages (not larval stages) of the next generation pass it on to other cattle. Morbidity and mortality vary greatly and are influenced by prevailing treatments employed in an area, previous exposure to a species/strain of parasite, and vaccination status. In endemic areas, cattle become infected at a young age and develop a long-term immunity.
しかし、 outbreaks can occur in these endemic areas if exposure to ticks by young animals is interrupted or immuno-naïve cattle are introduced. The introduction of babesia infected ticks into previously tick-free areas may also lead to outbreaks of disease.
症状:
高熱
neurologic signs such as incoordination, teeth grinding and mania. Some cattle may be found on the ground with the involuntary movements of the legs. When the nervous symptoms of cerebral babesiosis develop, the outcome is almost always fatal.
dark colored urine
拒食症
animals likely to separate from herd, be weak, depressed and reluctant to move
nb。 Bigemina parasitaemia often exceeds 10 per cent and may be as high as 30 per cent.
Clinical symptoms for babesia divergens are similar to b. Bigemina infections. The survivors may be weak and in reduced condition, although they usually recover fully. Subacute infections, with less apparent clinical signs, are also seen.
処理
Mild cases may recover without treatment. Sick animals can be treated with an antiparasitic drug. Treatment is most likely to be successful if the disease is diagnosed early; it may fail if the animal has been weakened by anemia. Imidocarb has been reported to protect animals from disease but immunity can develop. There are also concerns with regard to residues in milk and meat. In some cases blood transfusions and other supportive therapy should be considered.
防止
Effective control of tick fevers has been achieved by a combination of measures directed at both the disease and the tick vector. Tick control by acaracide dipping is widely used in endemic areas. Dipping may be done as frequently as every 4-6 weeks in heavily infested areas.
The occurrence of resistance of ticks, chemical residues in cattle and environmental concerns over the continued use of insecticides has led to use of integrated strategies for tick control. Babesiosis vaccines are readily available and are highly effective. Anti-tick vaccines are also available in some countries and can be used as part of an integrated program for the control of ticks.
Babesiosis can be eradicated by eliminating the host tick(s). In the us, this was accomplished by treating all cattle every two to three weeks with acaricides. In countries where eradication is not feasible, tick control can reduce the incidence of disease.
Treatment for control of tick (ethnovet):
Mix common salt and few camphor in castor oil or neem oil and apply over the affected area. Whole plant extract of ghaner (lantana camara) should be diluted with the urine of cattle and apply externally. Boil 250 gm of tobacco in 2 litres of water and add 5 litres of water and sprayed over the body of 10-20 animals.
Theileriosis
Theileriases are a group of tickborne diseases caused by theileria spp. Both theileria and babesia are members of the suborder piroplasmorina. Although babesia are primarily parasites of rbcs, theileria use, successively, wbcs and rbcs for completion of their life cycle in mammalian hosts.
The infective sporozoite stage of the parasite is transmitted in the saliva of infected ticks as they feed. Sporozoites invade leukocytes and, within a few days, develop to schizonts. In the most pathogenic species of theileria (eg, t parva and t annulata), parasite multiplication occurs predominantly within the host wbcs, whereas less pathogenic species multiply mainly in rbcs.
Development of the schizont stage of pathogenic theileria causes the host wbc to divide; at each cell division, the parasite also divides. Mortality in such stock is relatively low, but introduced cattle are particularly vulnerable. Unlike in babesiosis, in theileriasis there is no evidence of increased resistance in calves <6 months old.
East coast fever
East coast fever, an acute disease of cattle, is usually characterized by high fever, swelling of the lymph nodes, dyspnea, and high mortality. Caused by theileria parva, and transmitted by the tick vector rhipicephalus appendiculatus, it is a serious problem in east and southern africa.
Etiology and transmission
The african buffalo (syncerus caffer) is an important wildlife reservoir of t parva, but infection is asymptomatic in buffalo. T parva transmitted by ticks from either cattle or buffalo cause severe disease in cattle, but buffalo-derived parasites differentiate poorly to merozoites in cattle and generally are not transmitted by ticks.
したがって、 buffalo t parva are maintained as a separate population. Buffalo t parvawere previously considered a separate subspecies (t parva lawrencei), but dna typing indicate that the cattle and buffalo parasites are a single species. T parva is usually highly pathogenic, causing high levels of mortality, although some less pathogenic isolates have been identified.
Pathogenesis, clinical findings, and diagnosis
T parva sporozoites are injected into cattle by infected vector ticks. An occult phase of 5–10 days follows before infected lymphocytes can be detected in giemsa-stained smears of cells aspirated from the local draining lymph node.
続いて、 the number of parasitized cells increases rapidly throughout the lymphoid system, and from about day 14 onward, cells undergoing merogony are observed.
This is associated with widespread lymphocytolysis, marked lymphoid depletion, and leukopenia. Piroplasms in rbcs infected by the resultant merozoites assume various forms, but typically they are small and rod-shaped or oval.
Clinical signs vary according to the level of challenge, and they range from in apparent or mild to severe and fatal.通常、 fever occurs 7–10 days after parasites are introduced by feeding ticks, continues throughout the course of infection, and may be>106°f (41°c). Lymph node swelling becomes pronounced and generalized.
Lymphoblasts in giemsa-stained smears of needle aspirates from lymph nodes contain multinuclear schizonts. Anorexia develops, and the animal rapidly loses condition; lacrimation and nasal discharge may occur. Terminally, dyspnea is common. Just before death, a sharp decrease in body temperature is usual, and pulmonary exudate pours from the nostrils. Death usually occurs 18–24 days after infection.
The most striking postmortem lesions are lymph node enlargement and massive pulmonary edema and hyperemia. Hemorrhages are common on the serosal and mucosal surfaces of many organs, sometimes together with obvious areas of necrosis in the lymph nodes and thymus.
Anemia is not a major diagnostic sign (as it is in babesiosis) because there is minimal division of the parasites in rbcs, and thus no massive destruction of them.
Animals that recover are immune to subsequent challenge with the same strains but may be susceptible to some heterologous strains. Most recovered or immunized animals remain carriers of the infection.
Treatment and control
Treatment with parvaquone and its derivative buparvaquone is highly effective when administered in the early stages of clinical disease but is less effective in the advanced stages, in which there is extensive destruction of lymphoid and hematopoietic tissues. Immunization of cattle against t parva using an infection-and-treatment procedure is practical and continues to gain acceptance in some regions.
The components for this procedure are a cryopreserved sporozoite stabilate of the appropriate strain(s) oftheileria derived from infected ticks and a single dose of long-acting oxytetracycline given simultaneously; although oxytetracycline has little therapeutic effect when administered after development of disease, it inhibits development of the parasite when given at the outset of infection.
Cattle should be immunized 3–4 wk before being allowed on infected pasture. Parasitized bovine cells containing the schizont stage of t parva and t annulata can be cultivated in vitro as continuously growing cell lines. In the case of t annulata, cattle can be infected with a few thousand cultured cells.
Attenuated strains produced by serial passage of such cultures form the basis of live vaccines used in several countries, including israel, iran, india, and the former ussr.
Incidence of east coast fever can be reduced by rigid tick control, but this is not feasible in many areas because of cost and the high frequency of acaricidal treatment required.
Ringworm
This is the most common infectious skin disease affecting beef cattle. It is caused by a fungus, and is transmissible to man.通常、 the disease appears as crusty grey patches usually in the region of the head and neck and particularly around the eyes.
As a first step in controlling the disease, it is recommended that, whenever possible, affected animals should be segregated and their pens or stalls cleaned and disinfected. Clean cattle which have been in contact with the disease should be watched closely for the appearance of lesions and treated promptly.
Proper nutrition, particularly high levels of vitamin a, copper and zinc while not a cure, will help to raise the resistance of the animal and in so doing offer some measure of control. Contact your vet and or feed store for products to treat this disease. Using a wormer like ivomec will kill lice and help prevent cattle from scratching causing skin damage and a place for the fungus to enter.
Milk fever
Milk fever, also known as Parturient hypocalcaemia and parturient paresis, is a disease which has assumed considerable importance with the development of heavy milking cows. Decrease in the levels of ionized calcium in tissue fluids is basically the cause of the disease.
In all adult cows, there is a fall in serum-calcium level with the onset of lactation at calving. The disease usually occurs in 5 to 10-year-old cows, and is chiefly caused by a sudden decrease in blood-calcium level, generally within 48 hours after calving.
症状
in classical cases, hypocalcaemia is the cause of clinical symptoms. Hypophosphataemia and variations in the concentration of serum-magnesium may play some subsidiary role.
the clinical symptoms develop usually in one to three days after calving. They are characterized by loss of appetite, constipation and restlessness, but there is no rise in temperature.
Calf scour
Calves may develop scours due to bacterial or virus infections. Scours is known as “calf scours” or neonatal calf diarrhea. The primary causes of scours include:Rota virus, Corona virus, Cryptosporidium parvum 、 Salmonella and 大腸菌 。
Determine if treatment is required. Calves that are moving around in the pasture, with their tails up, probably do not need treatment. Check to see if the diarrhea is yellow or white.このような場合は、 treatment is probably not needed.
Determine if the calf is looking listless 。 Calves that are lethargic or not participating much in the playful activities with other calves are a red flag to pay attention to. Calves that are also losing condition are also cause for alarm.
Check to see if the calf is dehydrated. You can check for dehydration by pulling on the calf’s neck skin. If the skin “tents” this is a sign of dehydration.
Determine the calf’s body temperature. A normal body temperature ranges from 100.5 °f (38.1 °c) to 102.5 °f (39.2 °c). Anything outside of this range is a sign for treatment.
Separate the sick calf or calves from the healthy herd. You’ll want to do this to avoid spreading the disease further.
Administer fluids using your veterinarian-approved electrolyte solution. You may need to inject the fluids via iv or orally.
Follow appropriate nursing care protocol using your vet’s guidelines. This may include providing shelter, feed and a warm place to sleep.
A drawback from providing shelter is maintaining infectious control. You will have to work extra to get rid of soiled bedding and disinfect everything that a calf will touch, from the floor to the fence panels and even the feed bucket.
Enthnovet practice: Ingredients needed :vasambu ( Acorus calamus ) leaves 2 numbers, dried ginger ( Zingiber officinale ) 50 gm, guava ( Psidium guajava ) tender leaves 200 gm. The above materials are ground and made into a bolus and administered orally one or two times.
Here are more amazing ruminant animals farming books and related resources to guide and assist you further: